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STABILITY 

The results of investigations of stability of steady motions of Chaplygin's non- 

holonomic system /l/ are extended to the case of nonholonomic systems of a general 
form. The possibility of asymptotic stability with respect to a part of variables 

of steady motions of conservative nonholonomic systems is indicated. The results 

are illustrated by an example. 

1. We shall consider a scleronomic nonholonomic mechanical system subjected to the 

action of potential and dissipative forces. We assume the velocities -ql’,...,q,,’ of generaliz- 

ed coordinates Ql? * . ., &I to be related by n-Z nonintegrable relations of the form 

(1.1) 

and use the equations of motion of the system in the Voronets form 

(1.2) 

where 

whichwereobtained by eliminating the quantities qx’ from ZT, aT18qx’, and 2F, respectively, 

using formulas (1.1); T is the kinetic energy of the system; F is a dissipative function, 

and U a force function. 

We assume that conditions 

a(T+U) o aF=o, z!po 
aq, = 1 dq,, Ir 

a(e+u) -0, 

*qa 
?!$Lo, +=o, +kf: eHPYm = 0 

a a V=i+l 

(1.3) 

(1.4) 

(~~m-l-1~ .,.,n(m>l); a=k+l, . . . . 1; p=l+l, . . . . m 

p, r, s = 1, . . ., 1; x = I + 1, .) n) 

are satisfied. 

Conditions (1.3) imply that Eqs. (1.2) can be considered independently of the last n-m 
equations of nonholonomic relations which represent Chaplygin type relationships (the first 

n - 1 nonholonomic relations are relations of the general form; the case of m = 1 was consid- 

ered in /l/1. Conditions (1.4) imply that qa(a = k + 1, . . . . I) are ignorable coordinates in 

conformity with the definition in /2/. 
We moreover assume that 

aa 
-=O 
dq, 1 2 Qymy=O, b,,=O, (a,i%v=k-tl,...,l; p=l+i,...,m) (1.5) 

u=m+1 
The first group of conditions (1.5) indicates the absence of dissipation by cyclic veloci- 

ties, and the second,and third groups ensure the existence of manifold of steady motions of 
a dimension not less than the sum of ignorable coordinates and the number of nonholonomic rela- 

tions of the general form. (The third groups of conditions (1.4) and (1.5)must be omitted in 

Chaplygin's systems, while the second group of conditions (1.5) is necessarily satisfied in 
the case of a single ignorable coordinate). 

On the above assumptions the equations of motion (1.2) together with the equations of 
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nonholonomic relations of the general form obviously admit the solution 

qi = 9iOv qi’ = 0 (i = 1, . . ., k), qa’ = qao’ (a = k + 1, . . ., E); qp = qpx, (p = I + 1, . . ., m) (1.6) 

and the m constants qio,qad,QpO satisfy the system of k<m equations 

Note that nonholononlic systems with ignorable coordinates in the sense of definition (1.4) 

and (1.5) do not generally admit cyclic integrals. 

2. Let us consider an-arbitrary point of the manifold (1.7) and pose the question of 

stability of solution (1.6) with respect to perturbations of variables Qi* 'Ji 9 qa' , and Qp. 

Setting 
xi = qi - qiov Ya = qa’ - wz (Oa = qao’), zp = qp - qpo 

we obtain the equations of perturbed motion 

(2.1) 

Here and subsequently i, j, h=!, . . . . ic; a, f3, ~=k+i, .,., I; p, (J = I + 1, . ., m; p = m + 1, . . 
9, n, and x=l+l, . ..( n. All coeffficients of system (2.1) are calculated for qi=qio+ xi 
and qp= qpo + zg; and the symbol A denotes the remainder of values of the respective functions 

at points (pi0 + zir gpo + zp) and (~0, Go). 
In the neighborhood of solution (1.6) the first approximation equations assume the form 

(2.2) 

where the zero superscript indicates that the respective quantity is calculated for z 7 z = (I 

(in input variables for qi = 4io and qp = quo). 
The characteristic equation of system (2.2) has m - k zero roots and the remaining 2k 

roots satisfy the equation 
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3. If at least one root of Eq. (2.3) lies in the right-hand half-plane, solution (1.6)is 

unstable. Let us show that when all roots of Eq. (2.3) lie in the left-hand half-plane, we 

have a particular case of the critical case of several zero roots. 

Equations (2.2) admit m - k linear integrals 

zp--bbp,x,=&,(&,=const, p=l+l,...,m) (3.2) 

We substitute variables r) and 5 for y and z using formulas (3.1) and (3.2), respectively. 

We first solve system (2.1) for higher derivatives, then write the equations of perturbed mo- 

tion in variables 5,5=x', 11 and 5, We obtain 

Xi' = gi 

where A,, are elements of matrix which is the inverse of matrix /I ars 11 (r, s = 1, . . . ., I), and the 
expansion of functions @j, Yaj, and fipj in powers of its variables begins with terms of an 

order not lower than the first, while Yijo are generally nonzero. The explicit form of 

functions cD,Y, and p is not presented owing to their unwieldiness. 

Since the expansion of functions D'i may contain terms that are linear with respect to 

nand 5, it is necessary to transform the variables so as to reduce the system to the stand- 

ard form for the investigation of the critical case of several zero roots. For this we shall 

consider the system of equations 

Ei=O, XAi,(x,5)d'j(X,r1~.5)fBYij(5,~,rl,5)~j-0 (i=l,...,li_) 

by solving which for x and E we obtain ' 

Ei = O7 xi = Xi (q7 5) 

where Xi satisfy the system of equations 

@j (X, n, 5) = 0 (j = 1, . .t 4 (det II Aij II P 0) 
whose solution is known to exist, since it is assumed that all roots of Eq. (2.3) lie in the 

left half-plane. 
We carry out the change of variables 

xi = Xi (11~ 5) + Xi 

and write the equations of perturbed motions in variables X, E. ~1, and 5 

Xi' = Ei -t-Ei (x, 5, rl, 5) (3.3) 

When x = c = 0 the right-hand sides of equations for '1' and 5' of system (3.3) are 

identically zero, hence also Ez (0, 0, q, 5) = &+,(O,O,q, j)~ 0 /3,4/, i.e. system (3.3) is of 
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the form that corresponds to the particular case of the critical case of several zero roots. 

Thus, when all roots of Eq. (2.3) lie in the left half-plane, the Liapunov-Malkin theorem 
holds and solution (1.6) is stable (but not asymptotically). Then any perturbed motion fairly 
close to the unperturbed approaches one of the possible steady motions of the form (1.6) that 

belong to manifold (1.7) (but not to the unperturbed one) as t-t + CO. 

4. Using elementary transformations it is possible to reduce Eq. (2.3) the form (where 

the prime denotes transposition) 

det 11 Ah2 - (G + D) h - (C + E) I/ = 0 (4.1) 

C f E = II utj’ + a;, h&P+G, f ,YJ Ul,b,, 11, C' = C, E’ = - E 
P 

Equation (4.1) may be considered to be the characteristic equation of the system of equa- 

tions of motion 

Au>” = GIG’ $- Dw’ -+ Cu, + Eru (4.2) 
where w is a k-dimensional column vector, of the holonomic system with h- degrees of freedom, 

subjected to the action of potential, position nonpotential, gyroscopic, and dissipative-ac- 

celerating forces. It is possible to reduce the problem of steady motion stability of the in- 

put system, as in /l/, to that of equilibrium stability of system (4.2) which we shall call 

"reduced". As in /l/ it is possible to obtain a number of theorems on stability, or instabil- 

ity of steady motions of nonholonomic systems of the general form. All results of /l/ stated 

in the form of conditions on matrices appearing in Eq. (4.1) remain valid (the form of these 

matrices, except matrix A, changes but, generally, 
m = 1). 

coincides with the form in /l/ only when 

Let us now assume that external dissipative forces are absent (F = 0). In this case mat- 

ricesll.G,C, and E remain unchanged,while matrix D does not vanish and assumes the form 

This shows that under specific conditions Eq. (4.1) can have all of its roots in the left 

half-plane also for conservative nonholonolic systems. 
The above evidently occurs, for instance, under conditions /5/ 

Es 0; w’ (-C) I(' > 0, VW # 0; L' (-D*) u: > o, yu,+ 0 (4.3) 

or under conditions /6,7/ 

w' (- C) w) 0, Vu-J- 0; --D' = 6 D,, dD,w> 0, 'i'w+ rJ (4.4) 

(6>0 is fairly large) which means that in the reduced system the potential energy has a min- 

imum in equilibrium, the dissipative-accelerating forces are pure dissipative with total dis- 

sipation and, either potential position forces are absent (4.3), or the dissipative forces of 

the reduced system are fairly intensive (4.4). 

5. We thus have the following position the characteristic equation of the system of equa- 

tions for perturbed motion in the neighborhood of steady motion of a conservative nonholonomic 
system has, under certain conditions (e.g., (4.3) or (4.4)), besides zero roots,all its remain- 

ing roots with negative real parts. This phenomenon, impossible for holonomic systems, has a 

fairly simple explanation: the equations of perturbed motion of nonholonomic systems contain 

also in the conservative case besides the input forces, other forces including dissipative- 

accelerating ones. To verify this it is sufficient to write down the nonholonomic terms of 

the input system in the neighborhood of solution (1.6). Note that the nonholonomy terms in 

the equations of motion are linear combinations of reactions of nonholonomic relations, quad- 

ratic forms with respect to velocities, which in the steady motion neighborhood are sums of 

potential, nonpotential positional, gyroscopic, and dissipative accelerating forces. The last 

of which may under certain conditions be purely dissipative, yielding the unexpected effect of 

the presence in a conservative nonholonomic systems of roots of the characteristic equation 
with negative real parts and absence roots with positive real parts. 

This means, among other things, that, although the input system and the equations of per- 

turbed motion admit in the conservative case an energy integral of the form 

Q - u = const (5.1) 
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the linearized system does not admit such integral. 

of velocities qS'(S = 1, . ., 1) 

Function 8, in (5.1) is a quadratic form 

or the sum of quadratic and linear forms of velocity perturba- 

tions Si'(i = 1, ., k) and y,(a = k i- 1, . . ., I), as well as the function of variables zi and 

20 independent of zi' and y,, which in variables X, E, 11, and 5 contains terms of the form 

? 
(L'CSrlCZ (5.2) 

The total derivative of function (5.2) is by virtue of the linearized system zero, while 

by virtue of the total system it is nonzero, and contains terms which yield zero only in con- 

junction with the respective terms of the total derivative of the remaining part of function 

(5.1) which is nonzero by virtue of the linearized system. Perturbations of ignorable co- 

ordinate momenta can be juxtaposed to variables rla in holonomic systems. The ignorable co- 

ordinates maintain their initial values and by virtue of the complete system of equations of 

perturbed motion, since in holonomic systems the first integrals correspond to ignorable co- 

ordinates. 
Note that the coefficients of matrix D * linearly depend on the velocities of ignorable 

coordinates so that under specific conditions with a certain selection of signsof o,(a = k -i- 
1, . ., I) the dissipative accelerating forces may be purely dissipative, while with the op- 

posite selection of signs of&be purely accelerating. This means thatthesteady motions of 

nonholonomic systems can be stable (asymptotically with respect to variables X and E) when 

the motion is "in one direction" and unstable when it is in the "opposite direction" (under 

otherwise equal conditions). 

6. Example /8/. Consider a heavy solid body bounded by a convex surface laying 

on a horizontal absolutely rough plane. The position of the body is specified by the =- 

and Y -coordinates of its center of mass in the Oryz system of coordinates (the plane O=Y 

coincides with the horizontal plane, and the Oz -axis is directed vertically up) andbyEuler's 

anglesQ,(p, and $ formed by the principal central axes CE,Cq, and Cc of the body ellipsoid of 

inertia, and the axes of the stationary coordinate system. Then the Lagrange function and 

the system relations which express the absence of slip at the point of contact of the body 

with the plane assume the form 

z’ = a,O’ + a,rp' + ci&", IJ' I file. + fl*rp' + P$p 

a, = -(a sin 0 + 5 cos e) sin*, a2 = yz cos 0 sin rl, + y1 ~0s~ 

a, = y2 sin* + (vl cos e - 5 sine) ~0s 9, pi = --a~, / * (i = i, 2, 3) 
Y1 = 5 sin cp + 11 cos rp, yz = 5 cos cp - 7l sin 'p 

where m is the mass of the body; A, B, and C are its principal central moments of inertia; 

5,% 5 are the coordinates of the point of contact of the body and the horizontal plane in the 
system Q5. It can be shown that j. 11, and 5 are functions of variables 0 and 'p determin- 

ed by the form of the equation which specifies the boundary surface of the body. 
The above system is obviously a Chaplygin system; a direct test of conditions (1.4) will 

prove that II, is an ignorable coordinate. Hence the input system admits the solution 

8 = const, ‘p = const, q. = const 
and, in particular, the solution 

ezn/2, V - 0, 9 = I.0 = const (6.1) 

which corresponds to rotation of the body at constant angular velocity about the vertical prin- 

cipal axis CT of the body ellipsoid of inertia. 

Omitting the presentation of the input equations of motion because of their unwieldiness, 

we write the equations of perturbed motion 

'(A + mnz)u" = ma (rZ - rl) sin a cos CLOU - (A + C - B + zrnaz _ 
ma (rl sin2 a + r2 cosza)Iou’ + [(C - B)d + no (a - rl ~0~2 a _ 

r2 sin2a)(g + ao2)1 u - m (r2 - rl) sin a'cos a (6 + o~i) z + u 

(C + ?&)Y .. = IA + C - B + 2ma2 - ma(rl CO& + r2 sin 2a)]ou.- 
ma (72 - rl) sin a cos a 0~’ - m (rl - rl) sin a cos a (6 + aaz)u + 
((A - B)02 + m (a - rl sirPa - r2 cos%)(g + aop)]~ + v 

Bw’ = W 

where U, II, and u) are perturbations of variables O,rp, and 9.; U, v, and W are functions of vari- 

ables U, u', v, u' , and UJ whose expansion begins with terms of order not lower than the second, 

and (I (0, 0, 0, 0, w) _ ~(0, 0, 0, 0, u)) = W(0. 0, 0, 0, U) s 0; D is the distance between the point of 
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contact of the body with the plane, and its center of mass; r, and rz are the principal 

curvature radii of the body surface at the point of its contact with the plane; and a is the 
angle between the principal axis of the central ellipsoid of inertia at instant C(Cc) and the 

direction of the principal radius of curvature rl. 

Composing the characteristic equation for the linearized system, rejecting the zero root 
that corresponds to the critical variable 03, and applying the described above results, we 
obtain that the steady motion (6.1) is stable and, when all roots of the equation 

1%' + go?." -r Rh2 1. (lo,"E. + s L= 0 (6.2) 

lie in the left half-plane, it is asymptotically stable with respect to 0. O', CF , and 'F'; it 

is unstable, if at least one of the roots of Eq. (6.2)lies in the right half-plane. In this 

equation 
P = (A + ma')(C + ma2), Q = (A - C) ma (r? - rl) sin a cos a 

R = [(A + C - B + Zrm~*)~ - (A + C - R + 211d) ma (rl + r2) + 
m202rlr2]d - (A + ma*)[(A - B)02 + m (a - rl sink - 7% cos%z). 

(g + ad)] - (C + d)[(C - B)d + m (a -rz s111vz - T1 cosvz)(g + no?)1 

s = (A - B)(C - B)w’ + m (g + ad)d [A (a - 7, co&z - rz sin*a) _I- 
C (a - rl sin*n. - r2 cos2a) - R (2~ - TV - r,)] i_ m” (f + ao2)2. 

(a - 2& - r?) 

Using the Hurwitz criterion we find that all roots of Eq. (6.2) lie in the left half- 

plane, if the conditions 

(R - Pd)o* - S > 0, S > 0 (6.3) 

(A - C)(r, - rl) 0 sin a cos a > 0 (6.4) 

are satisfied. If even only one of these inequalities is violated, Eq. (6.2) has at least 

one root in the right half-plane. 
Inequalities (6.3) impose constraints only on mass distribution in the body, and its sur- 

face geometry, and on the angular velocity, while inequality (6.4) imposes the constraint on 

the sign of angular velocity (direction of rotation). The last inequality has a simple geo- 

metrical interpretation. The rotation is stable when a principal axis of inertia of the body 

(the large or the small) precedes the respective (large or small) axis of principal curvatures 

of the body surface at the point of its contact with the horizontal plane, and is unstable in 

the opposite case /8/. Another interpretation was proposed by Rumiantsev. The quantity 

(A -C) sin OL cos OL represents the product of inertia of the body with respect to axes linked to 

the directions of the principal radii of curvature of the body surface. Condition (6.4) then 

indicates that, for instance, when r,>rl, in the case of stability the sign of the product 

of inertia must be the same as that of the angular velocity of rotation of the body. 

The author thanks V. V. Rumiantsev for valuable advice and discussion of results. 
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